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Abstract The present chapter is devoted to the mathematical modeling and the
analysis of the dynamics of predator prey systems on a circular domain. We first
give some reminders on the Laplace operator and spectral theory on a disc. Then,
we analyze the dynamics of two mathematical models with two or three reaction
diffusion equations, defined on a circular domain. The results are given in terms of
local/global stability and of emergence of spatio-temporal patterns due to symmetry-
breaking bifurcations. One basic type of such a phenomenon is Turing bifurcation
which gives rise to pattern formation, a process by which a spatially uniform state
loses stability to a non-uniform state. We derive, theoretically, the conditions for
Turing diffusion driven instability to occur, and perform numerical simulations to
illustrate how biological processes can affect spatiotemporal pattern formation in a
spatial domain.
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1 Introduction

In our knowledge, the first mathematical model of predator prey interaction is given
by A. Lotka [16] and V. Volterra [20]. This model is a simplified system of two ordi-
nary differential equations which does not take into account the space variable and
supposes that every individual is accessible to every other individual and produces the
so-called “mean-field description of the system”. One of the oldest spatio-temporal
model which takes into account the movement of individuals/organisms/particules
is the standard reaction diffusion system (Fisher [13], Kolmogorov et al. [15],
Murray [17]):

∂N (X, t)

∂t
= DΔN (X, t) + f (N (X, t)), (X, t) ∈ Ω × R

+,Ω ⊆ R
n, (1)

where N is a p components vector, Δ is the Laplacian operator, D is the diffusion
matrix and f is a nonlinear term (reaction term) representing the interactions between
species N (individuals/organisms/particules).

From the mathematical modeling point of view, if N (x, t) is the concentration of
individuals/organisms/particules at time t > 0 and the position x . Then the diffusion
term can be regarded as:

∂N (X, t)

∂t
= DΔN (X, t)

where D (which can depend on x) is a positive definite symmetric diffusion
matrixwhich describes the non-homogeneous diffusion. Therefore, the local reaction
process is modeled by a local dynamical system as follows:

∂N (X, t)

∂t
= f (N (X, t))

To describe the interaction of both types of processes (diffusion and reaction), we
suppose that they happen on a small time interval. If we let this interval to tend
to zero, then this time-splitting scheme turns into the so-called reaction-diffusion
system, given by system (1).

If the reaction diffusion processes occur in a spatially confined domain Ω , then
boundary conditions have to be imposed, for example the Dirichlet condition when
specifying the values that the solution must check on the boundaries of the field:

N (X, t) = ϕ(X), X ∈ ∂Ω

or the Neumann condition when specifying the values the derivative of the solution
must satisfy on the boundaries of the field :

∂N

∂n
(X, t) = ψ(X), X ∈ ∂Ω; n is outflow through the boundary of Ω.
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If ψ(X) = 0, then, for the dynamic of the populations, there is no immigration nor
emigration.

There are other possible boundary conditions. For example the Robin boundary
conditions, which are a combination of Dirichlet and Neumann conditions. The
dynamic boundary conditions, or the mixed boundary conditions which correspond
to the juxtaposition of different boundary conditions on different parts of the border
of the domain.

A lot of mathematical problems arise from reaction diffusion theory such as: exis-
tence and regularity of solutions, boundedness of solutions, stability, traveling waves
etc. [3–5, 7–10, 14, 23, 24]. One of these questions is: how the diffusion term can
affect the asymptotic behavior of the corresponding system without diffusion term?
In 1952, Turing prove that, under certain conditions, chemical products react and dif-
fuse to produce non constant steady state and induce spatial patterns. This property
can be explained as follows: In the absence of diffusion, the stable uniform steady
state of the corresponding ordinary differential equation becomes unstable in the
presence of diffusion (which called diffusion driven instability or Turing instability)
and spatial patterns can evolve through bifurcations [17].

2 Spectral Theory on a Circular Domain

In this section, since there exists a difference between the analysis in a rectangle
domain and a circular domain (disc), we give some results on the Laplace operator
on a circular domain (see, [17]).

Let us consider a disc with a radius R as follows:

D = {(r, θ) : 0 ≤ r < R}.

Then the Laplace operator is defined in cartesian coordinates as Δϕ = ∂2

∂x2 ϕ + ∂2

∂y2 ϕ

and in polar coordinates (r, θ) as Δrθϕ = ∂2

∂r2 ϕ + 1
r

∂
∂r ϕ + 1

r2
∂2

∂θ2 ϕ,

with x = r cos(θ), y = r sin(θ) and r = √
x2 + y2 and tan(θ) = y

x .
To compute the eigenvectors on the circular domain, one needs to separate vari-

ables using polar coordinates. Considering the eigenvalue problem

⎧
⎨

⎩

Δrθϕ = −λϕ

ϕ(R, θ) = 0, θ ∈ [0, 2π ]
∂ϕ

∂η
= 0, on r = R and θ ∈ [0, 2π ]

(2)

and looking for solutions of the form ϕ(r, θ) = P(r)Φ(θ). By differentiation and
from the Eq. (2) we have:

P ′′(r)Φ(θ) + 1

r
P ′(r)Φ(θ) + 1

r2
P(r)Φ ′′(θ) = −λP(r)Φ(θ) (3)
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Therefore
r2

P(r)
{P ′′(r) + 1

r
P ′(r) + λP(r)} = −Φ ′′(θ)

Φ(θ)
(4)

The only way for these two expressions to equal for all possible values of r and θ is to
have themboth equal a constant. Therefor, there exists k such that−Φ ′′(θ) = k2Φ(θ)

The appropriate boundary conditions to apply to this problem state that the func-
tion Φ(θ) and its first derivative with respect to θ are periodic in θ .

Then, the solution is given by:

Φn(θ) = an sin(nθ) + bn cos(nθ) for integers k = n ≥ 1

where an and bn are constants.
Then we have the following second order differential equation of

P ′′(r) + 1

r
P ′(r) +

(
λ − k2

r2

)
P(r) = 0, such that P ′(R) = 0 (5)

Let x = √
λr and P(x) = J ( x√

λ
). Then, we have

J ′′(x) + 1

x
J ′(x) +

(
1 − k2

x2

)
J (x) = 0 (called Bessel equation) (6)

The solution for it is the nth Bessel function

Jn(x) =
+∞∑

l=0

(−1)l

l!(n + l)!
( x
2

)n+2l

Since P(r) = Jn(
√

λr), we get:

φλ
n (r, θ) = Φn(θ)Jn(

√
λr) (7)

which are eigenfunctions of the Laplacian operator in polar coordinates.
The eigenvaluesλ associated to the eigenvectorφλ

n are determined from the bound-
ary conditions.

From Dirichlet boundary conditions defined as follows φλ
n (R, θ) = 0,∀θ ∈

[0, 2π ] we get Jn(
√

λR) = 0. This means that
√

λR is a root of Jn .
From the Neumann boundary conditions: ∂rφ

λ
n (R, θ) = 0,∀θ ∈ [0, 2π ] we get

J ′
n(

√
λR) = 0. This means that

√
λR is a root of J ′

n .
We denote these roots by αnm and assume they are indexed in increasing order:

Jn(αnm) = 0, αn1 < αn2 < αn3 < ....
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Therefore
√

λR = αnm for some index m and the eigenvalues will be written in the
following form:

λnm =
(αnm

R

)2

where n is the index of nth Bessel function and m is the index number of their roots.
If R = 1, then the eigenvalues of the equations Δϕ = −λϕ are the square of zero
solution of Bessel functions.

3 Mathematical Model of Two Species

In this section, we consider a 2-D reaction diffusion model which is based on
the modified Leslie-Gower model with Beddington-DeAngelis functional responses
[4–6, 11, 12, 18, 19, 21, 22]:

⎧
⎨

⎩

∂u(t,X)

∂t = D1Δu(t, X) +
(
a1 − b1u(t, X) − c1v(t,X)

d1u(t,X)+d2v(t,X)+k1

)
u(t, X)

∂v(t,X)

∂t = D2Δv(t, X) +
(
a2 − c2v(t,X)

u(t,X)+k2

)
v(t, X)

(8)

u(t, X) and v(t, X) represent population densities at time t and space X = (x, y)
defined on a circular domain (or disc domain) with radius R (i.e.Ω = {X = (x, y) ∈
R

2, x2 + y2 < R2}), r1, a1, b1, k1, r2, a2, and k2 aremodel parameters assuming only
positive values, a1 is the growth rate of preys u, a2 describes the growth rate of
predators v, b1 measures the strength of competition among individuals of species
u, c1 is the maximum value of the per capita reduction of u due to v, c2 has a similar
meaning to c1, k1 measures the extent to which environment provides protection to
prey u, k2 has a similar meaning to k1 relatively to the predator v, d1 and d2 are two
positive constants, D1 and D2 are the terms diffusions of the preys and the predators.

Steady States and Stability

We consider the reaction diffusion system of two species (8) defined on a circular
domain with Neumann boundary conditions (which means that there are no flux of
species of both predator and prey on the boundary of the circular domain Ω), where
Ω = {(x, y) : x2 + y2 < R2}. We can write x and y in polar coordinates as follow
x = rcosθ and y = rsinθ , applying the polar coordinate transformation we find
Γ = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π}, R the radius of the disk Ω; r = √

x2 + y2,
and θ = tan−1(

y
x ).

Without loss of generalities we denote also u(t, x, y) = u(t, rcos(θ), rsin(θ)) =
u(t, r, θ) and v(t, x, y) = v(t, rcos(θ), rsin(θ)) = v(t, r, θ) are the densities of prey
and predators respectively in polar coordinates, at t = 0, u(0, r, θ) = u0(r, θ) ≥
0, v(0, r, θ) = v0(r, θ) ≥ 0. Therefore the Laplacian operator in polar coordinates
is given by:
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Δrθu = ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2
, (9)

Then, the spatio-temporal system (8) in polar coordinates is written as follows:

⎧
⎪⎨

⎪⎩

∂u(t,r,θ)

∂t = D1Δrθu(t, r, θ) + f (u(t, r, θ), v(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0
∂v(t,r,θ)

∂t = D2Δrθv(t, r, θ) + g(u(t, r, θ), v(t, r, θ)) ∀(r, θ) ∈ Γ, t > 0
∂u(t,r,θ)

∂n = ∂v(t,r,θ)

∂n = 0, ∀(r, θ) ∈ ∂Γ

(10)

where
⎧
⎨

⎩

f (u(t, r, θ), v(t, r, θ)) =
(
a1 − b1u(t, r, θ) − c1v(t,r,θ)

d1u(t,r,θ)+d2v(t,r,θ)+k1

)
u(t, r, θ),

g(u(t, r, θ), v(t, r, θ)) =
(
a2 − c2v(t,r,θ)

u(t,r,θ)+k2

)
v(t, r, θ),

(11)
A steady state (ue, ve) of (10) is a solution of the following system

{
D1Δrθue(t, r, θ) + f (ue(t, r, θ), ve(t, r, θ)) = 0
D2Δrθve(t, r, θ) + g(ue(t, r, θ), ve(t, r, θ)) = 0

(12)

Let us denote the non-negative cone by

R
2
+ = {(u, v) ∈ R

2, u0 ≥ 0, v0 ≥ 0}

and the positive cone by

intR2
+ = {(u, v) ∈ R

2, u0 > 0, v0 > 0}.

The trivial steady states (belonging to the boundary of int R2+, i.e. at which one or
more of populations has zero density or is extinct) are in the following forms:

E0 = (0, 0), E1 =
(
a1
b1

, 0

)
, E2 =

(
0,

a2k2
c2

)
. (13)

and the homogeneous steady state is given by E∗ = (u∗, v∗), where

u∗ = −B + √
B2 + 4AC

2A
, (14)

v∗ = a2
c2

(u∗ + k2), (15)

and

B = c1a2 + b1c2k1 + b1d2k2a2 − a1d1c2 − a1d2a2,
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A = b1d2a2 + d1b1c2,

C = k1a1c2 + a1a2d2k2 − c1a2k2,

Wewill investigate the asymptotic behavior of orbits starting in the positive cone.

Proposition 1 ([1])
Let Θ be the set defined by

Θ =
{
(u, v) ∈ R

2
+, 0 ≤ u ≤ a1

b1
, 0 ≤ v ≤ a2

b1c2
(a1 + b1k2)

}

(i) Θ is a positively invariant region for the flow associated to equation (10).
(ii) All solutions of (10) initiating in Θ are ultimately bounded with respect to R

2+
and eventually enter the attracting set Θ .

To study the existence of Turing instability one needs to prove the stability of spatially
independent homogeneous steady state.

Proposition 2 (local stability without diffusion [1])

• If 0 < u∗ < θ1 or θ2 < u∗ < a1
b1
, then E∗ = (u∗, v∗) is asymptotically stable.

• If (a22d2 + a2d1c2 + k1b1c2 < a1d1c2) and θ1 < u∗ < θ2, then E∗ = (u∗, v∗) is
unstable for system (16).

• If a1d1 < k1b1, then the positive equilibrium E∗ = (u∗, v∗) is locally asymptoti-
cally stable.

The proofs of Propositions 1 and 2 are given in [1].

4 Model with Three Species

In this section, we consider the following reaction-diffusion model [4, 5, 21, 23]

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂U (T,x,y)
∂T = D1ΔU (T, x, y) + (a0 − b0U (T, x, y) − v0V (T,x,y)

U (T,x,y)+d0
)U (T, x, y),

∂V (T,x,y)
∂T = D2ΔV (T, x, y) + (−a1 + v1U (T,x,y)

U (T,x,y)+d0
− v2W (T,x,y)

V (T,x,y)+d2
)V (T, x, y),

∂W (T,x,y)
∂T = D3ΔW (T, x, y) + (c3 − v3W (T,x,y)

V (T,x,y)+d3
)W (T, x, y),

∂U
∂n = ∂V

∂n = ∂W
∂n = 0,

U (0, x, y) = U0(x, y) ≥ 0, V (0, x, y) = V0(x, y) ≥ 0, W (0, x, y) = W0(x, y) ≥ 0,
(16)
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U (T, x, y) the density of prey specie, V (T, x, y) the density of intermediate preda-
tor specie and W (T, x, y) the density of top-predator specie, at time T and posi-
tion (x, y), defined on a circular domain (or disc domain) with radius R (i.e.
Ω = {(x, y) ∈ R2/x2 + y2 < R2}. Δ is the Laplacian operator. ∂U

∂η
, ∂V

∂η
and ∂W

∂η
are

respectively the normal derivatives of U , V and W on ∂Ω . The three species are
assumed to diffuse at rates Di (i = 1, 2, 3). a0, b0, v0, d0, a1, v1, v2, d2, c3, v3 and d3
are assumed to be positive parameters and are defined as follows: a0 is the growth
rate of the preyU , b0 measures the mortality due to competition between individuals
of the species U , v0 is the maximum extent that the rate of reduction by individual
U can reach, d0 measures the protection whose prey U and intermediate predator V
benefit through the environment, a1 represents the mortality rate V in the absence of
U , v1 is the maximum value that the rate of reduction by the individualU can reach,
v2 is the maximum value that the rate of reduction by the individual V can reach, v3
is the maximum value that the rate of reduction by the individual W can reach, d2
is the value of V for which the rate of elimination by individual V becomes v2

2 , c3
described the growth rate of W , assuming that there are the same number of males
and females. d3 represents the residual loss caused by high scarcity of prey V of the
species W .

The initial data U0(x, y), V0(x, y) and W0(x, y) are non-negative continuous
functions onΩ . The vector η is an outward unit normal vector to the smooth boundary
∂Ω . The homogeneous Neumann boundary condition signifies that the system is self
contained and there is no population flux across the boundary ∂Ω .

Following the same algebraic computations as done in Sect. 3, firstly, we write x
and y in polar coordinates as follow x = r cos θ and y = r sin θ . By applying the
polar coordinate transformation, we find Γ = {(r, θ) : 0 < r < R, 0 ≤ θ < 2π}. R
is the radius of the disk Γ , with r = √

x2 + y2 and θ = tan−1(
y
x ).

Without loss of generalities we denote also

u(t, x, y) = u(t, r cos(θ), r sin(θ)) = u(t, r, θ),

v(t, x, y) = v(t, r cos(θ), r sin(θ)) = v(t, r, θ)

and
w(t, x, y) = w(t, r cos(θ), r sin(θ)) = w(t, r, θ)

are the densities of prey, predators and top predators respectively in polar coordinates.
Therefore the Laplacian operator in polar coordinates is given by:

Δrθu = ∂2u

∂r2
+ 1

r

∂u

∂r
+ 1

r2
∂2u

∂θ2
. (17)
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To simplify system (16) we introduce some transformations of variables:

U = a0
b0

u, V = a20
b0v0

v, W = a30
b0v0v2

w, T = t

a0
, r = r

′

a0
, θ = θ

′
,

and
a = b0d0

a0
, b = a1

a0
, c = v1

a0
, d = d2v0b0

a20
, p = c3a20

v0b0v2
, q = v3

v2
, s = d3v0b0

a20
, δ1 = a0D1,

δ2 = a0D2, δ3 = a0D3.

Then the spatio-temporal system (16) in polar coordinates is written as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(t,r,θ)
∂t = δ1Δrθu(t, r, θ) + f (u(t, r, θ), v(t, r, θ),w(t, r, θ)), ∀(r, θ) ∈ Γ, t > 0

∂v(t,r,θ)
∂t = δ2Δrθ v(t, r, θ) + g(u(t, r, θ), v(t, r, θ),w(t, r, θ)), ∀(r, θ) ∈ Γ, t > 0

∂w(t,r,θ)
∂t = δ3Δrθw(t, r, θ) + h(u(t, r, θ), v(t, r, θ),w(t, r, θ)), ∀(r, θ) ∈ Γ, t > 0

∂u(t,r,θ)
∂n = ∂v(t,r,θ)

∂n = ∂w(t,r,θ)
∂n = 0, ∀(r, θ) ∈ ∂Γ

u(0, r, θ) = u0(r, θ) ≥ 0, v(0, r, θ) = v0(r, θ) ≥ 0, w(0, r, θ) = w0(r, θ) ≥ 0.
(18)

where

⎧
⎪⎪⎨

⎪⎪⎩

f (u(t, r, θ), v(t, r, θ),w(t, r, θ)) = (1 − u(t, r, θ) − v(t,r,θ)

u(t,r,θ)+a )u(t, r, θ),

g(u(t, r, θ), v(t, r, θ),w(t, r, θ)) = (−b + cu(t,r,θ)

u(t,r,θ)+a − w(t,r,θ)

v(t,r,θ)+d )v(t, r, θ),

h(u(t, r, θ), v(t, r, θ),w(t, r, θ)) = (p − qw(t,r,θ)

v(t,r,θ)+s )w(t, r, θ),

(19)
Without diffusion, system (18) becomes

⎧
⎪⎪⎨

⎪⎪⎩

∂u(t,r,θ)

∂t = (1 − u(t, r, θ) − v(t,r,θ)

u(t,r,θ)+a )u(t, r, θ),

∂v(t,r,θ)

∂t = (−b + cu(t,r,θ)

u(t,r,θ)+a − w(t,r,θ)

v(t,r,θ)+d )v(t, r, θ),

∂w(t,r,θ)

∂t = (p − qw(t,r,θ)

v(t,r,θ)+s )w(t, r, θ),

(20)

A steady state (ue, ve,we) of (20) is an homogeneous steady state of (18) which is a
solution of the following system

⎧
⎪⎪⎨

⎪⎪⎩

δ1Δrθue(t, r, θ) + f (ue(t, r, θ), ve(t, r, θ),we(t, r, θ)) = 0,

δ2Δrθve(t, r, θ) + g(ue(t, r, θ), ve(t, r, θ),we(t, r, θ)) = 0,

δ3Δrθwe(t, r, θ) + h(ue(t, r, θ), ve(t, r, θ),we(t, r, θ)) = 0,

(21)
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Steady States and stability

Simple (and tedious) algebraic computations show that problem (18) has a homoge-
neous steady-state if and only

qc > bq + p and qc − bq − p > a(bq + p). (22)

The homogeneous steady-state in the case when d = s, is uniquely given by

u∗ = a(bq + p)

qc − bq − p
, v∗ = (1 − u∗)(u∗ + a) and w∗ = p(v∗ + s)

q
. (23)

A similar study can be used when d �= s.
The conditions (22) ensure that the system (18) has a positive homogeneous steady

state corresponding to constant coexistence of the three species E∗ = (u∗, v∗,w∗).

Proposition 3 Conditions (22) are satisfied, the set defined by

Θ ≡ [0, 1] × [0, 1 + a] ×
[
0,

p

q
(1 + a + s)

]
(24)

is positively invariant region, moreover all solutions of (18) initiating in Θ are
ultimately bounded with respect to R3+ and eventually enter the attracting set Θ .

By the same in the last section, we need the following result which states the stability
of the homogeneous steady state.

Proposition 4 (local stability without diffusion) If conditions (22) are satisfied and

a + 1

qc
>

2a

qc − bq − p
,

and

b + dp((1 − u∗)(u∗ + a) + s)

q((1 − u∗)(u∗ + a) + d)2
>

cu∗

u∗ + a
(25)

and
p2((1 − u∗)(u∗ + a) + s)2

q(u∗ + a)
> b + dp((1 − u∗)(u∗ + a) + s)

q((1 − u∗)(u∗ + a) + d)2
.

Then, the homogeneous steady state E∗ = (u∗, v∗,w∗) is locally asymptotically
stable.

The proofs of Propositions 3 and 4 require long and tedious (albeit simple) algebraic
computations, they can be found in [2].
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5 Pattern Formation and Turing Instability

Pattern formation is a process by which a spatially uniform state loses stability to a
non-uniform state : a pattern.

Two basic types of symmetry-breaking bifurcations, which are responsible for the
emergence of spatio-temporal patterns are:

• The space-independentHopf bifurcation breaks the temporal symmetry of a system
and gives rise to oscillations that are uniform in space and periodic in time.

• The (stationary) Turing bifurcation breaks spatial symmetry, leading to the forma-
tion of patterns that are stationary in time and oscillatory in space.
In this section, we mainly focus on this last type of bifurcation.

5.1 Turing Instability for Two Species Model

In this section, in order to study the diffusion driven instability for system (10), we
have to analyze the stability of the homogeneous steady state E∗ = (u∗, v∗) which
corresponds to co-existence of prey and predator. The Jacobian evaluated at the equi-
librium E∗ = (u∗, v∗) is

M =
⎛

⎝
fu fv

gu gv

⎞

⎠ =
⎛

⎝
∂
∂u f (u∗, v∗) ∂

∂v f (u
∗, v∗)

∂
∂u g(u

∗, v∗) ∂
∂v g(u

∗, v∗)

⎞

⎠

=
⎛

⎜
⎝

(a1d1−k1b1)u∗−2b1d1u∗2−b1d2u∗v∗
d1u∗+d2v∗+k1

− c1u∗(k1+d1u∗)
(d1u∗+d2v∗+k1)2

a22
c2

−a2

⎞

⎟
⎠

By setting

S =
⎛

⎝
u − u∗

v − v∗

⎞

⎠ ϕ(r, θ)eλt+ikr

where φ(r, θ) is a eigenfunction of the Laplacian operator on a disc domain with
zero flux boundary, i.e.: {

Δrθφ = −k2φ,

φr (R, θ) = 0

k is the wave number and λ is the perturbation growth rate. Then by linearizing
around (u∗, v∗), we have the following equation:
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dS

dt
= MS + DΔS (26)

where

D =
⎛

⎝
D1 0

0 D2

⎞

⎠

by substituting S by φeλt in Eq. (26) and canceling eλt , we get:

λφ = M − Dk2φ (27)

We obtain the characteristic equation for the growth rate λ as determinant of

det (λI2 − M + k2D) = 0 ⇔
∣
∣
∣
∣
λ − fu + D1k2 − fv

−gu λ − gv + D2k2

∣
∣
∣
∣ = 0, (28)

By computation we have the expression of the characteristic equation Θ(k2):

Θ(k2) = λ2 + R(k2)λ + B(k2) (29)

where
R(k2) = k2(D1 + D2) − tr(M) (30)

and
B(k2) = D1D2k

4 − (D2 fu + D1gv)k
2 + det(M). (31)

Therefore, the eigenvalues are the roots of (29) are given by

λ±(k) = −R(k2) ± √
(R(k2))2 − 4B(k2)

2
(32)

Let

θ1,2 =
−z2 ±

√
z22 − 4z1z3

z21
, (33)

and
z1 = 2b1d1c2 + b1d2a2,

z2 = a22d2 + a2d1c2 + k1b1c2 − a1d1c2,

z3 = a22d2k2 + b1d2k2a2 + k1a2c2.
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Proposition 5 If a22d2 + a2d1c2 + k1b1c2 > a1d1c2 or 0 < u∗ < θ1 or θ2 < u∗, θ1
and θ2 are defined inEq. (33) and if D2 < (D2)c, then E∗ = (u∗, v∗) is asymptotically
stable for system (10). If D2 > (D2)c then E∗ = (u∗, v∗) is unstable for system (10),
where,

(D2)c = −(2D1 fvgu − D1 fugv)

f 2u

+
√

(2D1 fvgu − D1 fugv)2 − D2
1 f

2
u g

2
v

f 2u

Now, we study the conditions leading to Turing instability for the two-species model.
These conditions are given by:

Tr(M) = fu + gv < 0 (34)

det(M) = fugv − fvgu > 0 (35)

D2 fu + D1gv > 0 (36)

(D2 fu + D1gv)
2 − 4D1D2 det(A) > 0 (37)

For a predator-prey model, the necessary condition to have the instability of Turing
is that the predator spreads faster than the prey, namely D2 > D1. Turing instabil-
ity corresponds to the onset of patterns periodic in space and stationary in time.
Mathematically speaking, the case when Im(λ(k)) = 0 for k = kc is called Turing
instability.

The conditions R(k2) > 0 and B(k2) > 0 are equivalent to the stability crite-
rion R(k2 = 0) > 0 and B(k2 = 0) > 0 for the local dynamic. In particular this
means that R(k2) > 0 for all k, (tr(M) < 0 and k2(D1 + D2) > 0, then R(k2) > 0),
therefore the only choice for Re(λ(k)) > 0 is B(k2) < 0 for some k �= 0. Thus the
instability of the homogeneous solution can occur when B(k2) is zero for some k.
It means that the instability occur at the point where the equation B(k2) = 0 has a
multiple root. We find that B(k2) is a quadratic polynomial with respect to k2. Its
extremum is a minimum at some k2 [17].

B
′
(k2) = 4D1D2k3 − 2(D2 full + D1gv)k = 0 =⇒ k2min = 1

2

(
D2 fu+D1gv

D1D2

)
. (38)

Equation (29) is defined if
D2 fu + D1gv > 0. (39)
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Then,

Bmin = B(k2min) = det (M) − (D2 fu + D1gv)2

4D1D2
. (40)

If det (M) <
(D2 fu+D1gv)2

4D1D2
, then there exists k2 �= 0 such that B(k2) < 0.

The bifurcation for which Bmin = 0 that is det (M) = (D2 fu+D1gv)2

4D1D2
occurs for a

critical value (D2)T of the diffusion coefficient D2,which is a solution of the equation:

f 2u D
2
2 + 2(2D1 fvgu − D1 fugv)D2 + D2

1g
2
v = 0 (41)

Then the critical value kc of the wave number k associated with the critical value
(D2)T is given by

k2min = 1

2

(
(D2)T fu − D1a2

D1(D2)T

)

and the wavelength wT associated also with the critical value (D2)T is given by

wT = 2π

kT
= 2π

√
2D1(D2)T

(D2)T fu − D1a2

Then, the resolution of Eq. (31) gives us the region of wavenumbers of unstable
modes

k21 = D2 fu + D1gv − √
(D2 fu + D1gv)2 − 4D1D2 det(M)

2D1D2

k22 = D2 fu + D1gv + √
(D2 fu + D1gv)2 − 4D1D2 det(M)

2D1D2

5.2 Turing Instability for Three Species Model

Let us now analyze this symmetry breaking bifurcation for system (18). We know
that Turing instability occurs from a finite number of wave vectors producing stable
spatial patterns depending essentially on the initial condition. Let

W =

⎛

⎜
⎜
⎜
⎜
⎝

u − u∗

v − v∗

w − w∗

⎞

⎟
⎟
⎟
⎟
⎠

ϕ(r, θ)eλt+ikr (42)

where k is the wave number and ϕ(r, θ) is an eigenfunction of the Laplacian operator
on a disc domain with zero flux on the boundary, i.e.:
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{
Δrθϕ = −k2ϕ,

ϕr (R, θ) = 0

Then, by linearizing around (u∗, v∗,w∗), we have the following equation:

dW

dt
= DΔW + LE (E∗)W. (43)

where E = (u, v,w)T and

L(E) =
⎛

⎝
f (u, v,w)

g(u, v,w)

h(u, v,w)

⎞

⎠ =
⎛

⎝
(1 − u − v

u+a )u
(−b + cu

u+a − w
v+d )v

(p − qw
v+s )w

⎞

⎠

Then, problem (20) can be written as: Consider now the system with diffusion (18)
and let us substitute W by ϕeλt in Eq. (43) and canceling eλt , we get:

λϕ = LE (E∗) − Dk2ϕ. (44)

We obtain the characteristic equation for the growth rate λ as the determinant of

det (λI3 − LE (E∗) + K 2D) = 0 ⇐⇒

det

⎛

⎜
⎜
⎜
⎜
⎝

λ − a11 + δ1k2 −a12 −a13

−a21 λ − a22 + δ2k2 −a23

−a31 −a32 λ − a33 + δ3k2

⎞

⎟
⎟
⎟
⎟
⎠

= 0. (45)

The characteristic polynomial from (45) is

H(k2) = λ3 + Φ1(k
2)λ2 + Φ2(k

2)λ + Φ3(k
2) = 0, (46)

with

Φ1(k
2) = k2(δ1 + δ2 + δ3) + B1,

Φ2(k
2) = k4(δ1δ2 + δ1δ3 + δ2δ3)

−k2(δ1(a22 + a33) + δ2(a11 + a33) + δ3(a11 + a22)) + B2,
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Φ3(k
2) = k6δ1δ2δ3 − k4(δ1δ2a33 + δ1δ3a22 + δ2δ3a11)

+k2(δ3(a11a22 − a12a21) + δ2a11a33) + B3.

For the stability of the equilibrium point, according to the Routh–Hurwitz criteria,
Re(λ) < 0 if

Φ1(k
2) > 0, (47)

Φ2(k
2) > 0, (48)

Φ1(k
2)Φ2(k

2) − Φ3(k
2) > 0. (49)

The Turing instability requires that the stable homogeneous steady state becomes
unstable due to the interaction and diffusion of species.

Under the conditions of Turing:

Re(λ(k2 = 0)) < 0, Re(λ(k2 > 0)) > 0, for a k2 > 0 (50)

We have the following Theorem.

Proposition 6 If one of the following conditions holds:

Φ1(k
2) < 0,

Φ2(k
2) < 0,

Φ1(k
2)Φ2(k

2) − Φ3(k
2) < 0

then, the homogeneous steady state E∗ = (u∗, v∗,w∗) of system (18) drives instabil-
ity.

Proof For k2 �= 0 we have Φ1(k2) = −(a11 + a22 + a33) + k2(δ1 + δ2 + δ3). If
a11 + a22 + a33 < 0, then Φ1(k2) > 0 and instability of Turing does not occur.
Thereafter, we suppose in Eq. (48) ρ = k2 > 0, to get:

Φ2(ρ) = ρ2 p1 − ρp2 + p3, (51)

where
p1 = δ1δ2 + δ1δ3 + δ2δ3,

p2 = δ1a22 + δ1a33 + δ2a11 + δ2a33 + δ3a11 + δ3a22,

p3 = a11a22 + a11a33 + a22a33 − a12a11 − a23a23,
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a necessary condition for E∗ = (u∗, v∗,w∗) of (18) becomes unstable is that

Φ2(ρ) = ρ2 p1 − ρp2 + p3 < 0. (52)

For the instability,weneed that p2 > 0 and p22 − 4p1 p3 > 0 for someρ. The equation
p1ρ2 − p2ρ + p3 has two positive roots given by:

ρ1 =
p2 −

√
p22 − 4p1 p3

2p1
and ρ2 =

p2 −
√
p22 + 4p1 p3

2p1
. (53)

The constant positive steady state E∗ = (u∗, v∗,w∗) of (18) is unstable and so (18)
experiences Turing instability provided that ρ1 < ρ < ρ2.

The expressions Φ3(k2) and Φ1(k2)Φ2(k2) − Φ3(k2) are a cubic function of k2

of the form
Φ3(k

2) = q1(k
2)3 + q2(k

2)2 + q3k
2 + q4, (54)

q1 = δ1δ2δ3,

q2 = −(δ1δ2a33 + δ1δ3a22 + δ2δ3a11),

q3 = δ1a22hw + δ2a11a33 + δ3a11a22 − δ1a23a32 − δ3a22a21

= δ1(a22a33 − a23a32) + δ2a11a33 + δ3(a11a22 − a12a21),

q4 = Φ3(0) = a12a21a33 + a11a23a32 − a11a22a33,

with q1 = det (D) ≥ 0 and q4 = −det (LE (E∗)) > 0.
If Φ3 has a minimum, one finds by simple computation that

dΦ3

d(k2)
= 3q1(k

2)2 + 2q2(k
2) + q3 = 0 (55)

and d2Φ3
d2(k2) > 0, this minimum is reached for the solution of (55) at

k2in f =
−q2 +

√
q2
2 − 3q1q3

3q1
. (56)

If a11 > 0, a22 > 0 and a33 > 0 then q2 < 0.
If a22a33 < a23a32, a11a33 < 0, a11a22 < a12a21 or a22a33 < 0, a11a33 < 0 and

a11a22 < 0 then, q3 < 0.
To verify condition (49) let us denote

Ψ (k2) = Φ1(k
2)Φ2(k

2) − Φ3(k
2) = r1(k

2)3 + r2(k
2)2 + r3k

2 + r4, (57)
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where

r1 = 2δ1δ2δ3 + δ21δ3 + δ21δ2 + δ1δ
2
2 + δ1δ

2
3 + δ3δ

2
2 + δ2δ

2
3

= (δ2 + δ3)(δ
2
1 + δ2δ3 + δ1δ2 + δ1δ3),

r2 = −(δ21a22 + δ21a33 + δ22a11 + δ22a33 + δ23a11 + δ23a22 + 2δ1δ2a11 + 2δ1δ2a33
+2δ1δ3a11 + 2δ1δ3a22 + 2δ1δ2a22 + 2δ1δ3a33, +2δ2δ3a11 + 2δ2δ3a22 + 2δ2δ3a33)

= −a11(δ3 + δ2)(2δ1 + δ2 + δ3) − a22(δ3 + δ1)(δ1 + 2δ2 + δ3)

−a33(δ1 + δ2)(δ1 + δ2 + 2δ3),

r3 = δ1a
2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 + δ3a

2
11 + δ3a

2
22 + 2δ1a11a22

+2δ1a11a33 + 2δ1a22a33 − δ1 fvgu − δ1 fwhu + 2δ2 fugv
+2δ2a11a33 + 2δ2a22a33 − δ2a12a21 − δ2a23a32 + 2δ3a11a22
+2δ3a11a33 + 2δ1a22a33 − δ3a23a32

= δ1a
2
22 + δ1a

2
33 + δ2a

2
11 + δ2a

2
33 + δ3a

2
11 + δ3a

2
22 + 2(δ1 + δ2

+δ3)(a11a22 + a11a33 + 2a33a22) − δ1a12a21
−δ2(a12a21 + a23a32) − δ3a23a32,

r4 = Ψ (0)

= −(a211a22 + a211a33 + 2a11a22a33 + a11a
2
33 + a11a

2
22

+a222a33 + a22a
2
33) + a12a21a22 + a22a23a32.

r4 > 0 if
a211a22 + a211a33 + 2a11a22a33 + a11a

2
33 + a11a

2
22

+a222a33 + a22a
2
33 < a12a12a22 + a22a23a32.

If Ψ has a minimum, by simple algebraic computation we get

dΨ

d(k2)
= 3r1(k

2)2 + 2r2(k
2) + r3 = 0 (58)

and d2Ψ
d2(k2) > 0, this minimum is reached for the solution of (58) at

k21in f = k2in f =
−r2 +

√
r22 − 3r1r3

3r1
(59)

r2 < 0 if a11 > 0, a22 > 0 and a33 > 0.
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r3 < 0 if a12a21 > 0, (a12a21 + a23a32) > 0, a23a32) > 0 and δ1a222 + δ1a233 +
δ2a211 + δ2a233 + δ3a211 + δ3a222 + 2(δ1 + δ2 + δ3)(a11a22 + a11a33 + 2a33a22) <

δ1a12a21 + δ2(a12a21 + a23a32) + δ3a23a32.
By using the conditions for the existence of the homogeneous steady state of

the system without diffusion to be stable (Φ1(0) > 0, Φ2(0) > 0, Φ3(0) > 0Φ1(0)
Φ2(0) − Φ3(0) > 0) and the necessary condition for the homogeneous steady state
of the system with diffusion to be instable that is to say, at least one of the following
conditions, (Φ1(k2) < 0, Φ2(k2) < 0, Φ3(k2) < 0, Φ1(k2)Φ2(k2) − Φ3(k2) < 0) is
satisfied for a certain k2 �= 0, we can prove the following proposition which gives a
necessary condition (not sufficient) for the instability for the homogeneous steady
state of the reaction-diffusion system with three species.

Let

Φ3(k
2
in f ) = 2q3

2 − 9q1q2q3 + 27q2
1q4 − 2(q2

2 − 3q1q3)
3
2

27q3
1

Ψ (k21in f ) = 2r32 − 9r1r2r3 + 27r21r4 − 2(r22 − 3r1r3)
3
2

27r31

Therefore, in the following assumptions:
(H0) : q2 < 0
(H1) : q3 < 0
(H2) : q2

2 − 3q1q3 > 0
(H3) : r2 < 0, r3 < 0 and q2

2 − 3q1q3 > 0
(H4) : r22 − 3r1r3 > 0
(H5) : 2q3

2 − 9q1q2q3 + 27q2
1q4 − 2(q2

2 − 3q1q3)
3
2 < 0

(H6) : 2r32 − 9r1r2r3 + 27r21r4 − 2(r22 − 3r1r3)
3
2 < 0

and using

Lemma 1 (i)- If (H0) or (H1) and (H2) are verified, then k2in f is a positive real.
(ii)- If (H0), (H2) and (H3) (Resp (H4)) are verified, then k2in f is a positive real (Resp
k21in f is a positive real).
(iii)- If (H5) (Resp (H6)), then Φ3(k2in f ) < 0 (Resp Ψ (k21in f ) < 0).

we can easily prove the final result:

Proposition 7 Suppose
1—[(H0) or (H1) and (H2)] or [(H0), (H2) and (H3)] or [(H0), (H2) and (H4)].
2—(H5) or (H6).
If conditions 1 and 2 are satisfied, then we have emergence of Turing instability for
system (18).
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5.3 Numerical Simulations

In this subsection, we perform numerical simulations to illustrate the theoretical
results given in the previous sections. In Figs. 1 and 2, Patterns formation are shown
for systems (10) and (18).

Initial conditions for system (10) have been chosen as

u(0, r, θ) = u∗((rcosθ)2 + (rsinθ)2) < 400 (60)

v(0, r, θ) = v∗((rcosθ)2 + (rsinθ)2) < 400 (61)

Fig. 1 Spatial distribution of
species for system (10) with
D1 = D2 = 1, a1 = 1,
a2 = 0.02, b1 = 1, k1 =
0.2, k2 = 0.1, d1 =
0.9, d2 = 0.1, c1 =
1.1, c2 = 0.02 and time
varying a for t = 100, b for
t = 2800, c for t = 3500, d
for t = 6000. The left
figures are spatial evolutions
of the prey and the right are
for predator
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Fig. 2 Spatial distribution of prey (first column), predator (second column) and top predator (third
column) for system (18). Spatial patterns are obtained with diffusivity coefficients δ1 = 0.02, δ2 =
0.01and δ3 = 0.05, a0 = 0.5, a1 = 0.4, b0 = 0.36, c3 = 0.2, d0 = 0.3, d2 = 0.4, d3 = 0.4, v0 =
0.4, v1 = 0.8, v2 = 0.4, v3 = 0.6 at different time levels: for t = 0 (a), t = 1000 (b), t = 2000 (c),
t = 20000 (d)

Initial conditions for system (18) have been chosen as,

u(0, r, θ) = u∗((rcosθ)2 + (rsinθ)2) < 50,

v(0, r, θ) = v∗((rcosθ)2 + (rsinθ)2) < 50,

w(0, r, θ) = w∗((rcosθ)2 + (rsinθ)2) < 50.
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